Temperature Dependence of Unbinding Forces between Complementary DNA Strands
نویسندگان
چکیده
منابع مشابه
Temperature dependence of unbinding forces between complementary DNA strands.
Force probe techniques such as atomic force microscopy can directly measure the force required to rupture single biological ligand receptor bonds. Such forces are related to the energy landscape of these weak, noncovalent biological interactions. We report unbinding force measurements between complementary strands of DNA as a function of temperature. Our measurements emphasize the entropic cont...
متن کاملCoding capacity of complementary DNA strands.
A Fortran computer algorithm has been used to analyze the nucleotide sequence of several structural genes. The analysis performed on both coding and complementary DNA strands shows that whereas open reading frames shorter than 100 codons are randomly distributed on both DNA strands, open reading frames longer than 100 codons ("virtual genes") are significantly more frequent on the complementary...
متن کاملWhy are complementary DNA strands symmetric?
MOTIVATION Over sufficiently long windows, complementary strands of DNA tend to have the same base composition. A few reports have indicated that this first-order parity rule extends at higher orders to oligonucleotide composition, at least in some organisms or taxa. However, the scientific literature falls short of providing a comprehensive study of reverse-complement symmetry at multiple orde...
متن کاملMechanical separation of the complementary strands of DNA.
We describe the mechanical separation of the two complementary strands of a single molecule of bacteriophage lambda DNA. The 3' and 5' extremities on one end of the molecule are pulled progressively apart, and this leads to the opening of the double helix. The typical forces along the opening are in the range of 10-15 pN. The separation force signal is shown to be related to the local GC vs. AT...
متن کاملStatistical evaluation of the coding capacity of complementary DNA strands.
Two independent methods are used to evaluate the protein-coding information content in different classes of DNA sequences. The first method allows to evaluate the statistical relevance of finding unidentified reading frames, longer than 100 codons, on both DNA strands of: a) 117 DNA sequences that code for 142 nuclear proteins; b) 39 stable RNA coding sequences and c) 36 other DNA sequences whi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2002
ISSN: 0006-3495
DOI: 10.1016/s0006-3495(02)75416-7